skip to main content


Search for: All records

Creators/Authors contains: "Farquharson, Louise M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Currently, more than half of the world’s human population lives in urban areas, which are increasingly affected by climate hazards. Little is known about how multi-hazard environments affect people, especially those living in urban areas in northern latitudes. This study surveyed homeowners in Anchorage and Fairbanks, USA, Alaska’s largest urban centers, to measure individual risk perceptions, mitigation response, and damages related to wildfire, surface ice hazards, and permafrost thaw. Up to one third of residents reported being affected by all three hazards, with surface ice hazards being the most widely distributed, related to an estimated $25 million in annual damages. Behavioral risk response, policy recommendations for rapidly changing urban environments, and the challenges to local governments in mitigation efforts are discussed.

     
    more » « less
  2. Abstract

    Lakes are an important ecosystem component and geomorphological agent in northern high latitudes and it is important to understand how lake initiation, expansion and drainage may change as high latitudes continue to warm. In this study, we utilized Landsat Multispectral Scanner System images from the 1970s (1972, 1974, and 1975) and Operational Land Imager images from the 2010s (2013, 2014, and 2015) to assess broad-scale distribution and changes of lakes larger than 1 ha across the four permafrost zones (continuous, discontinuous, sporadic, and isolated extent) in western Alaska. Across our 68 000 km2study area, we saw a decline in overall lake coverage across all permafrost zones with the exception of the sporadic permafrost zone. In the continuous permafrost zone lake area declined by −6.7% (−65.3 km2), in the discontinuous permafrost zone by −1.6% (−55.0 km2), in the isolated permafrost zone by −6.9% (−31.5 km2) while lake cover increased by 2.7% (117.2 km2) in the sporadic permafrost zone. Overall, we observed a net drainage of lakes larger than 10 ha in the study region. Partial drainage of these medium to large lakes created an increase in the area covered by small water bodies <10 ha, in the form of remnant lakes and ponds by 7.1% (12.6 km2) in continuous permafrost, 2.5% (15.5 km2) in discontinuous permafrost, 14.4% (74.6 km2) in sporadic permafrost, and 10.4% (17.2 km2) in isolated permafrost. In general, our observations indicate that lake expansion and drainage in western Alaska are occurring in parallel. As the climate continues to warm and permafrost continues to thaw, we expect an increase in the number of drainage events in this region leading to the formation of higher numbers of small remnant lakes.

     
    more » « less
  3. Abstract

    Erosion along high-latitude coasts has been accelerating in recent decades, resulting in land loss and infrastructure damage, threatening the wellbeing of local communities, and forcing undesired community relocations. This review paper evaluates the state of practice of current coastal stabilization measures across several coastal communities in northern high latitudes. After considering global practices and those in northern high latitude and arctic settings, this paper then explores new and potential coastal stabilization measures to address erosion specific to northern high-latitude coastlines. The challenges in constructing the current erosion control measures and the cost of the measures over the last four decades in northern high-latitude regions are presented through case histories. The synthesis shows that among the current erosion controls being used at high latitudes, revetments built with rocks have the least reported failures and are the most common measures applied along northern high-latitude coastlines including permafrost coasts, while riprap is the most common material used. For seawalls, bulkheads, and groin systems, reported failures are common and mostly associated with displacement, deflection, settlement, vandalism, and material ruptures. Revetments have been successfully implemented at sites with a wide range of mean annual erosion rates (0.3–2.4 m/year) and episodic erosion (6.0–22.9 m) due to the low costs and easy construction, inspection, and decommissioning. No successful case history has been reported for the non-engineered expedient measures that are constructed in the event of an emergency, except for the expedient vegetation measure using root-wads and willows. Soft erosion prevention measures, which include both beach nourishment and dynamically stable beaches, have been considered in this review. The effectiveness of beach nourishment in Utqiaġvik, Alaska, which is affected by permafrost, is inconclusive. Dynamically stable beaches are effective in preventing erosion, and observations show that they experience only minor damages after single storm events. The analysis also shows that more measures have been constructed on a spit (relative to bluffs, islands, barrier islands, and river mouths), which is a landform where many Alaskan coastal communities reside. The emerging erosion control measures that can potentially be adapted to mitigate coastal erosion in high-latitude regions include geosynthetics, static bay beach concept, refrigerating techniques, and biogeochemical applications. However, this review shows that there is a lack of case studies that evaluated the performance of these new measures in high-latitude environments. This paper identifies research gaps so that these emerging measures can be upscaled for full-scale applications on permafrost coasts.

     
    more » « less
  4. Abstract

    Arctic lakes located in permafrost regions are susceptible to catastrophic drainage. In this study, we reconstructed historical lake drainage events on the western Arctic Coastal Plain of Alaska between 1955 and 2017 using USGS topographic maps, historical aerial photography (1955), and Landsat Imagery (ca. 1975, ca. 2000, and annually since 2000). We identified 98 lakes larger than 10 ha that partially (>25% of area) or completely drained during the 62‐year period. Decadal‐scale lake drainage rates progressively declined from 2.0 lakes/yr (1955–1975), to 1.6 lakes/yr (1975–2000), and to 1.2 lakes/yr (2000–2017) in the ~30,000‐km2study area. Detailed Landsat trend analysis between 2000 and 2017 identified two years, 2004 and 2006, with a cluster (five or more) of lake drainages probably associated with bank overtopping or headward erosion. To identify future potential lake drainages, we combined the historical lake drainage observations with a geospatial dataset describing lake elevation, hydrologic connectivity, and adjacent lake margin topographic gradients developed with a 5‐m‐resolution digital surface model. We identified ~1900 lakes likely to be prone to drainage in the future. Of the 20 lakes that drained in the most recent study period, 85% were identified in this future lake drainage potential dataset. Our assessment of historical lake drainage magnitude, mechanisms and pathways, and identification of potential future lake drainages provides insights into how arctic lowland landscapes may change and evolve in the coming decades to centuries.

     
    more » « less